Mechanisms of ammonia and ammonium transport by rhesus-associated glycoproteins.

نویسندگان

  • Tolga Caner
  • Solange Abdulnour-Nakhoul
  • Karen Brown
  • M Toriqul Islam
  • L Lee Hamm
  • Nazih L Nakhoul
چکیده

In this study we characterized ammonia and ammonium (NH3/NH4(+)) transport by the rhesus-associated (Rh) glycoproteins RhAG, Rhbg, and Rhcg expressed in Xenopus oocytes. We used ion-selective microelectrodes and two-electrode voltage clamp to measure changes in intracellular pH, surface pH, and whole cell currents induced by NH3/NH4(+) and methyl amine/ammonium (MA/MA(+)). These measurements allowed us to define signal-specific signatures to distinguish NH3 from NH4(+) transport and to determine how transport of NH3 and NH4(+) differs among RhAG, Rhbg, and Rhcg. Our data indicate that expression of Rh glycoproteins in oocytes generally enhanced NH3/NH4(+) transport and that cellular changes induced by transport of MA/MA(+) by Rh proteins were different from those induced by transport of NH3/NH4(+). Our results support the following conclusions: 1) RhAG and Rhbg transport both the ionic NH4(+) and neutral NH3 species; 2) transport of NH4(+) is electrogenic; 3) like Rhbg, RhAG transport of NH4(+) masks NH3 transport; and 4) Rhcg is likely to be a predominantly NH3 transporter, with no evidence of enhanced NH4(+) transport by this transporter. The dual role of Rh proteins as NH3 and NH4(+) transporters is a unique property and may be critical in understanding how transepithelial secretion of NH3/NH4(+) occurs in the renal collecting duct.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Rhesus B and Rhesus C glycoproteins: properties of facilitated ammonium transport in recombinant kidney cells.

The mammalian Rh (Rhesus) protein family belongs to the Amt/Mep (ammonia transporter/methylammonium permease)/Rh superfamily of ammonium transporters. Whereas RhCE, RhD and RhAG are erythroid specific, RhBG and RhCG are expressed in key organs associated with ammonium transport and metabolism. We have investigated the ammonium transport function of human RhBG and RhCG by comparing intracellular...

متن کامل

Ammonia transport in the kidney by Rhesus glycoproteins.

Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH...

متن کامل

Ammonium homeostasis and human Rhesus glycoproteins.

The brain ammonium production is detoxified by astrocytes, the gut ammonium production is detoxified by hepatic cells, and the renal ammonium production plays a major role in renal acid excretion. As a result of ammonium handling in these organs, the ammonium and pH values are strictly regulated in plasma. Up until recently, it was accepted that mammalian cell transmembrane ammonium transport w...

متن کامل

Aedes aegypti Rhesus glycoproteins contribute to ammonia excretion by larval anal papillae.

In larval Aedes aegypti, transcripts of the Rhesus-like glycoproteins AeRh50-1 and AeRh50-2 have been detected in the anal papillae, sites of ammonia (NH3/NH4+) excretion; however, these putative ammonia transporters have not been previously localized or functionally characterized. In this study, we show that the AeRh50s co-immunolocalize with apical V-type H+-ATPase as well as with basal Na+/K...

متن کامل

The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli.

Ammonium is one of the most important nitrogen sources for bacteria, fungi, and plants, but it is toxic to animals. The ammonium transport proteins (methylamine permeases/ammonium transporters/rhesus) are present in all domains of life; however, functional studies with members of this family have yielded controversial results with respect to the chemical identity (NH(4)(+) or NH(3)) of the tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 309 11  شماره 

صفحات  -

تاریخ انتشار 2015